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Capillary instability and breakup of a viscous thread
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Abstract. Papageorgiou derived a similarity solution that describes the asymptotic behavior of a thinning viscous
thread suspended in vacuum, near the critical time and around the location of breakup. The motion is driven by
surface tension, and the fluid inertia is neglected throughout the evolution. To assess the physical relevance of
the similarity solution, the evolution of an infinite thread immersed in an ambient fluid with arbitrary viscosity,
subject to periodic axisymmetrtic perturbations is simulated through solution of the equations of Stokes flow by a
boundary integral method. The results show that when the thread is suspended in vacuum, the similarity solution
accurately describes the process of thinning over an extended length of the thread between the developing bulges,
and captures the late stages of breakup for a broad range of initial conditions. But a small amount of ambient
fluid viscosity, as small as 0·05 times the viscosity of the thread fluid, drastically alters the nature of the motion
by shifting the location of the breakup points toward the bases of developing bulges, and causing the thread to
develop locally asymmetric shapes.
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1. Introduction

The mixing of two immiscible fluids generally proceeds in two stages. The first stage involves
the formation of sheet-like or thread-like interfacial structures whose size is small compared
to the dimensions of the enclosing container or apparatus; this is typically accomplished by
mechanical agitation in static and dynamic mixing devices, sheet formation at slits, or jet
formation at nozzles and slots. The second stage involves the disintegration of these structure
due to a rapidly varying ambient motion in a turbulent flow, or to the development of instabil-
ities associated with viscosity contrast or surface tension. Accordingly, given the physical
properties of the fluids, the smallest size of the dispersed phase is determined by the shortest
length scale of the active fluid motion, which may be identified with the Kolmogorov scale of
a turbulent flow, or set inversely proportional to a power of the capillary number expressing
the relative importance of viscous stresses and capillary pressure due to surface tension.

For example, in industrial mixing devices, emulsions are typically produced by agitating
two fluids to generate thread-like structures, and then relying on small-scale fluctuations or
surface-tension to break the threads into small drops (e.g.Tjahjadi and Ottino [1]). A further
increase in the rate of agitation causes the elongation and breakup of the dispersed drops into
smaller fragments, but this only occurs when the rate-of-deformation of the ambient flow is
sufficiently high, or the viscosity of the dispersed phase is comparable to, or less than, the
viscosity of the ambient fluid; highly viscous drops in a simple shear flow cannot be made to
elongate beyond a threshold even in the absence of surface tension. Establishing the relation
between the macroscopic variables of a mixing process and the dynamics of the microstructure
defines an important area of study within the general context of two-phase flow.
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There are several further applications where the breakup of a liquid thread due to surface
tension plays an important role, or receives special attention in achieving a desired goal. For
example, in liquid-liquid extraction processes in perforated plate columns, jets of the dispersed
phase are formed at each perforation at sufficiently high flow rates, only to break up at a
certain distance away from the plate (Skelland and Walker [2], Skelland and Slaymaker [3]).
Other applications include the breakup of liquid jets emanating from ink-jet nozzles in printing
technology (e.g.Bogy [4], Allen et al. [5]), spraying and atomization, and the pinch-off of
pendant drops (Hendersonet al. [6]). Examples from the field of life sciences include the
instability and breakup of the threads comprising a spider’s web (Boys [7]).

The instability of a liquid thread has been the object of a large number of theoretical and
experimental investigations, as reviewed by Eggers [8] and Lin and Reitz [9]. Plateau [10]
and Rayleigh [11, 12] first established that a circular inviscid jet, or circular liquid thread,
both suspended in vacuum, break up due to surface tension to yield a sequence of drops. For
sinusoidal perturbations with wave numberk, the thread or jet is unstable whenka < 1, where
a is the unperturbed thread radius. That is, the thread or jet is unstable when the wave length
of a perturbation,L = 2π/k, is larger than the thread circumferencial arc length.

Weber [13] and Tomotika [14] extended Rayleigh’s analysis taking into consideration the
effect of the viscosity of the ambient fluid. Their results showed that the instability criterion
ka < 1 remains unchanged irrespective of the physical properties of the thread and ambient
fluid. In fact, Goren [15, 16] showed the criterion remains valid even in the presence of one or
two coaxial cylindrical surfaces confining an annular layer (see also Newhouse and Pozrikidis
[17]). Further theoretical studies investigated the growth of spatially developing perturbations
and the evolution of non-axisymmetric perturbations [4], while laboratory observations con-
firmed the ability of the linear stability theory to predict the initial growth of small-amplitude
perturbations (e.g.Rumscheidt and Mason [18], Elemanset al.[19], Janssen [20]). In an effort
to extend the predictive power of the linear theory, several authors carried out perturbation
expansions with respect to the ratio of the amplitude and wave length of the perturbation, as
reviewed by Bogy [4] and Eggers [8], or built asymptotic expansions based on the long wave-
length or slender-thread approximation, as reviewed by Papageorgiou [21]. Weber [13] and
Lee [22] led these efforts by developing one-dimensional models to describe the evolution of
long waves.

Because of its importance in jet or thread disintegration, the local dynamics of a thin-
ning thread close to the time and near the location of breakup has received special attention.
Renardy [23] considered the evolution of a thread suspended in vacuum undergoing instability
under conditions of Stokes flow, and showed that the thin-thread equations admit singular
solutions according to which the radius of thread tends to zero at a finite time. Eggers [24] and
Papageorgiou [25] discovered similarity solutions of the thin-thread equations, respectively,
for Navier-Stokes and Stokes flow; both were generalized by Renardy [26] and Brenneret al.
[27]. The similarity solutions confirm that the thread breaks up at a finite time, albeit following
different functional forms. The Stokes flow solution predicts that the shape of the interface and
velocity field are symmetric about the point of breakup, whereas the Navier-Stokes solution
predicts unsymmetric flows and shapes. Numerical solutions by Eggers and Papageorgiou
confirmed the relevance of the similarity solutions for a broad range of initial conditions, in
the context of thin-thread asymptotics.

Numerical simulations of the Rayleigh instability, outside the linear and weakly nonlinear
regimes or for finite-amplitude perturbations, were performed on several occasions. Bousfield
et al. [28] simulated the instability of Newtonian and non-Newtonian threads at zero and
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nonzero Reynolds numbers using a finite element method. Mansour and Lundgren [29] sim-
ulated the instability of an inviscid jet using a boundary-integral method for potential flow.
Tjahjadi, Stone and Ottino [30], and Newhouse and Pozrikidis [17] simulated the evolution of
elongated drops, threads, and annular layers at vanishing Reynolds number using boundary-
integral methods. Janssen [20] performed further simulations using a finite-element method.
The numerical results of Newhouse and Pozrikidis [17] established the importance of the ratio
of viscosity of the thread to that of the ambient fluid on the location of the point of breakup and
on the size of the emerging primary and satellite drops. More recently, Richardset al. [31, 32]
used the volume-of-fluid method to simulate the capillary breakup of a jet that is injected into
another fluid at non-zero Reynolds numbers, under a broad range of conditions. A detailed
numerical investigation of the local dynamics near the critical time and around the location of
break up, however, has not been presented.

Lister and Stone [33] discussed the nature of capillary breakup of a viscous thread sur-
rounded by another viscous fluid. Using scaling arguments, they showed that the viscosity of
the ambient fluid, however small, becomes important sufficiently close to the time of breakup.
Moreover, Lister and Stone simulated with high-accuracy numerics the relaxation of an ex-
tended axisymmetric drop whose viscosity is equal to that of the ambient fluid, and obtained
numerical evidence that a self-similar behavior is established near pinching. On either side
of the point of pinching, the interface develops conical shapes with different cone angles, in
agreement with the earlier simulations of Newhouse and Pozrikidis [17]. An interesting new
feature is that the axial velocity near the region of minimum thread radius appears to increase
at a logarithmic rate, apparently due to the asymmetry of the conical shapes.

The main objective of the present study is to assess the physical relevance of the similarity
solution of the thin-thread equations for Stokes flow developed by Papageorgiou [25]. For this
purpose, we use the boundary-integral method to simulate the evolution of an infinite viscous
thread subject to axisymmetric perturbations, with emphasis on the behavior near the point
of breakup. The results will confirm that the similarity solution arises from a broad range of
initial conditions, and will reveal that a small amount of ambient fluid viscosity alters the
character of the motion in a profound way.

2. Local dynamics near breakup

As a prelude to the numerical investigation, we review the equations of thin-thread evolution
and the Papageorgiou similarity solution, recasting them into our notation. Consider the region
near the minimum radius of a thinning axisymmetric thread immersed in an inviscid ambient
fluid, with the interface exhibiting constant surface tensionγ , as depicted in Figure 1(a). In
polar cylindrical coordinates(x, σ, ϕ), the radius of the thread is described by the equation

σ = f (x, t). (2.1)

The motion is subject to the conditions that

(a) the shear stress vanishes at the interface,
(b) the slope∂f/∂x is small compared to unity, and
(c) the pressurep and the velocity component in the axial direction within the threadux are

independent of the radial positionσ .
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(a) (b)

Figure 1. (a) Illustration of a thinning axisymmetric thread immersed in an inviscid constant-pressure medium,
evolving under the action of surface tension. (b) Capillary instability of an infinite thread with viscosityµ, im-
mersed in an ambient fluid with viscosityλµ, subject to a periodic axisymmetric perturbation;a is the equivalent
thread radius, andL is the wave length of the perturbation.

Following the physical derivation of Renardy [23], we perform a mass balance over a sec-
tion of the thread contained between two cross-sections that are separated by an infinitesimal
distance, and thus obtain the following evolution equation forf

∂(πf 2)

∂t
+ ∂(πf

2ux)

∂x
= 0. (2.2)

Expanding the spatial derivative and simplifying, we find

Df

Dt
≡ ∂f

∂t
+ ux ∂f

∂x
= −1

2
f
∂ux

∂x
, (2.3)

where D/Dt = ∂/∂t + ux∂/∂x.
An analogous momentum balance yields

∂(πf 2ρux)

∂t
+ ∂(πf

2ρu2
x)

∂x
= ∂(πf 2σxx)

∂x
+ ∂(2πf γ )

∂x
, (2.4)

whereρ is the density of the thread fluid,γ is the surface tension, andσxx is thexx component
of the stress tensor; for a Newtonian fluid

σxx = −p + 2µ
∂ux

∂x
, (2.5)

whereµ is the viscosity of the thread fluid. Equation (2.4) may be regarded as an evolution
equation for the axial component of the velocity. To evaluate the pressure, we use the following
approximate form of the interfacial dynamic boundary condition

σσσ ≡ −p + 2µ
∂uσ

∂σ
∼= 2κmγ ∼= − 1

f
γ, (2.6)

whereκm is the mean curvature of the interface. Near the thread axis, the continuity equation
simplifies to

∂ux

∂x
+ 1

σ

∂(σuσ )

∂σ
∼= ∂ux

∂x
+ 2

∂uσ

∂σ
∼= 0. (2.7)
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Combining Equations (2.6) and (2.7), we obtain

p = 1

f
γ − µ∂ux

∂x
. (2.8)

Substitution of expression (2.8) in Equation (2.5), and the result in Equation (2.4), gives

ρ

(
∂(f 2ux)

∂t
+ ∂(f

2u2
x)

∂x

)
= 3µ

∂

∂x

(
f 2∂ux

∂x

)
+ γ ∂f

∂x
. (2.9)

Finally, we use Equation (2.2) to simplify the left-hand side of (2.9), and arrive at the one-
dimensional equation of motion

ρ
Dux
Dt
≡ ρ

(
∂ux

∂t
+ ux ∂ux

∂x

)
= 3µ

f 2

∂

∂x

(
f 2∂ux

∂x

)
+ γ

f 2

∂f

∂x
, (2.10)

which is to be solved together with Equation (2.3) determining the evolution of the thread
radius. Eggers [24] developed, and Brenneret al. [27] refined similarity solutions governing
the local dynamics around the point of, and near the critical time for, breakup.

When inertial forces are negligible, the left-hand side and mid-side of Equation (2.10) may
be set equal to zero. Integration of the resulting equation with respect tox yields

3µf 2∂ux

∂x
+ γf = q(t), (2.11)

whereπq(t) is the axial force exerted on any thread cross-section. Combining Equations
(2.11) and (2.3) we have the alternative set of equations

Df

Dt
= 1

6µ

(
γ − q(t)

f

)
(2.12)

and

∂ux

∂x
= 1

3µ

(
−γ
f
+ q(t)

f 2

)
. (2.13)

Considering now a periodic interface with wave lengthL, we divide Equation (2.11) by
f 2, integrate the resulting equation with respect tox over one period, and require a periodicity
condition for the velocity to expressq(t) in terms of the instantaneous shape of the interface,
as

q(t) = γ
∫ b+L

b

dx

f

/∫ b+L

b

dx

f 2
. (2.14)

Equation (2.12) may be regarded as an evolution equation, determining the rate of change
of the thickness of an infinitesimal thread section that is advected with the axial velocity.
The coupling between the motions of the individual thread sections occurs solely through
the integrals on the right-hand side of Equation (2.14). Renardy [23] labeled point particles
along the thread axis with their axial position at a designated origin of timeX regarded their
instantaneous axial position as a function ofX and timet, x(X, t) and introduced the stretch
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s = ∂x/∂X. Kinematic considerations indicate that Ds/Dt = s∂ux/∂x, and conservation
of mass requires that D(sf 2)/Dt = 0. Combining these equations with Equation (2.13), we
obtain an evolution equation for Ds/Dt . On the basis of this equation, Renardy [23] showed
that the thin-thread equations may possess singular solutions from smooth initial conditions.

Papageorgiou [25] searched for similarity solutions in the form

f (x, t) = bτ δf̂ (ξ), ux(x, t) = γ

µ
τζ ûx(ξ), (2.15)

whereb is a characteristic length scale, a caret signifies a dimensionless variable,τ is a
dimensionless time defined as

τ ≡ γ

µb
(t − tc); (2.16)

tc is the critical time for thread breakup,ξ is a dimensionless similarity variable defined as

ξ ≡ x − xc
bτβ

(2.17)

andxc is the critical location where the breakup occurs. Substitution of expressions (2.15) in
Equation (2.2) requires thatζ = β−1. Substituting expressions (2.15) in Equation (2.11), we
obtain

6γ bτ δ−1

(
−δf̂ + (βξ + ûx)df̂

dξ

)
= γ b − 1

f̂

q(t)

τ δ
. (2.18)

The satisfaction of this relation requires a proper functional form for the force functionq(t)

on the right-hand side.
Papageorgiou [25] considered a periodic thread with wave lengthL, and assumed that

Equations (2.15) are valid within each period centered, for example, at the point hosting the
pinch off. Integrating Equation (2.11) with respect tox over one period, and imposing the
periodicity condition for the velocity, we find

q(t) = bγ cτ δ, (2.19)

wherec is a dimensionless approximate constant defined as

c =
∫ xc+L/2
xc−L/2

dx
f̂ (ξ)∫ xc+L/2

xc−L/2
dx
f̂ 2(ξ)

=
∫ (xc+L/2)/(bτβ)
(xc−L/2)/(bτβ)

dξ
f̂ (ξ)∫ (xc+L/2)/(bτβ)

(xc−L/2)/(bτβ)
dξ

f̂ 2(ξ)

. (2.20)

Substitution of Equation (2.19) in (2.18) requiresδ = 1 and produces an eigenvalue problem
for β. Papageorgiou [25] convincingly argued that the main contributions to the integrals on
the right-hand side of (2.20) are made from regions that are close to the point of break-up,
and replaced the lower and upper limits of integration with−∞ or+∞. Equations (2.3) and
(2.13) become

d logf̂

dξ
= 1− 1

2
dûx
dξ

ûx + βξ (2.21)
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and

d̂ux
dξ
= 1

3

c − f
f̂ 2

. (2.22)

To ensure that the right-hand side of (2.21) is finite, we require that the zerosξ0 of the
numerator and denominator occur at the same location. Thus

1− 1

2

(
d̂ux
dξ

)
ξ=ξ0
= 0 (2.23)

and

ûx(ξ0)+ βξ0 = 0. (2.24)

Equation (2.24), together with the condition that the velocity vanishes atξ = 0, requiresξ0 =
0. Equation (2.23) then provides us with the value(d̂ux/dξ)0 = 2 which can be substituted in
(2.22) to produce a quadratic equation relating the value off̂ (ξ = 0) and the constantc

6f̂ 2(ξ = 0)+ f̂ (ξ = 0)− c = 0. (2.25)

A series expansion solution of the preceding equations provides us with a supplemental equa-
tion, as discussed by Papageorgiou [25], and the system has the solution

f̂ (ξ = 0) = 1

12(1+ β), c = 1

24

3+ 2β

1+ β)2 . (2.26)

The similarity solution predicts that near the time of breakup, the radius of the threads de-
creases linearly in time according to the scaling law

f (xc, t) ∼= γ

12(1+ β)µ(tc − t). (2.27)

Papageorgiou [25] solved the nonlinear eigenvalue problem and foundβ = 0·175, to shown
accuracy. Brenneret al.[27] discovered an inclusive family of solutions corresponding to other
values ofβ, but the solution presented by Papageorgiou is the most stable one, and thus most
likely to occur in practice. Furthermore, Papageorgiou [25] used a pseudo-spectral method
to solve the model system of Equations (2.2) and (2.12) subject to a sinusoidal perturbation,
and found excellent agreement with his similarity solution. Papageorgiou [21] recognized that
the assumption that inertial effects are negligible is valid at all times only ifβ lies within the
interval (0·5,1). Since the computed valueβ = 0·175 does not lie within this interval, the
scaling (2.12) will eventually break down near the critical time for breakup.

The analysis of Papageorgiou assumes that, close to the critical time for breakup,q(t)

behaves linearly in time. Relaxing this restriction, we expressq(t) in the more general power-
law form

q(t) = γ bq0τ
χ , (2.28)
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whereq0 is a dimensionless constant, andχ is a positive exponent. Equation (2.18) takes the
form

6τ δ−1

(
−δf̂ + (βξ + û)df̂

dξ

)
= 1− q0

1

f̂
τ χ−δ . (2.29)

When the exponentsδ − 1 andχ − δ are negative, the left-hand side and the second term on
the right-hand side of (2.29) become singular at the critical time. Balancing the order of the
singularities yieldsδ = (χ + 1)/2. Renardy [26] discussed solutions for values ofχ other
than unity, but these values are associated with nonsmooth profiles that lie outside the scope
of the present work.

3. Boundary-integral formulation

In this section, we describe a boundary-integral formulation that is suitable for simulating
the evolution of a thread subject to a periodic perturbation, under conditions of Stokes flow.
Consider a circular thread of a fluid with equivalent radiusa and viscosityµ, immersed in
an ambient fluid with viscosityλµ, subject to axisymmetric periodic disturbances with wave
lengthL, as illustrated in Figure 1(b). To simulate the motion of the interface, we follow a
well-established formalism, and derive the following Fredholm integral equation of the second
kind for the interfacial velocity

uα(x0) = 1

1+ λ
(
− 1

4πµ

∫
C

Gαβ(x0, x)1fβ(x)dl(x)

+1− λ
4π

∫ PV

C

Qαβγ (x0, x)uβ(x)nγ (x)dl(x)
)
, (3.1)

(Rallison and Acrivos [34],e.g.Pozrikidis [35, Chapter 5]). The pointx0 lies in the interface,
and the rest of the symbols are defined as follows: Greek subscripts run over the axial and
radial polar cylindrical coordinatesx or σ ,C is one period of the contour of the interface in an
azimuthal plane;l is the arc length alongC; n is the unit vector normal to the interface pointing
into the thread;PV denotes the principal value of the double-layer integral. The quantity1f
is a jump in the traction across the interface. For an interface with constant interfacialγ ,
1f = 2κmγ n whereκm is the interface mean curvature.

The kernelsG andQ in Equation (3.1) are the periodic Green’s functions of axisymmetric
Stokes flow for the velocity and the stress, with wavelength matching that of the perturbation.
As the radial position of the observation pointσ0 tends to infinity, all components ofGαβ tend
to vanish, except forGxx that increases like ln(σ0). In this limit, all components ofQαβγ tend
to decay likeσ−2

0 , except for three components that decay like 8πσ/(RLσ0). The computation
of G andQ will be discussed in Subsection 3.2.

Starting with the singularly forced Stokes equation that defines the Green’s function, and
using the interpretation of the double-layer potential as a distribution of stresslets, we can
show that the stress tensorQ satisfies the following integral identities∫ PV

C

Qαxγ (x0, x)nγ (x)dl(x) = 4πδαx (3.2a)
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Capillary instability and breakup of a viscous thread263

Figure 2. Instability of an infinite thread under conditions of Stokes flow; graphs of the reduced linear growth rate
of axisymmetric perturbations,̂σI ≡ µaσI /γ , in the regime of unstable wave numberska, for λ = 0, 0·01, 0·05,
0·1, 0·2, 0·3, 0·4, 0·5, 1·0, 5·0, 10·0.

and∫ PV

C

Qβαγ (x, x0)σnβ(x)dl(x) = −4πδαγ σ0. (3.2b)

Identity (3.2a) suggests that, whenλ = 0, Equation (3.1) has an infinite number of solu-
tions that differ by an arbitrary constant vector oriented along thex axis. Physically, since
the ambient fluid is inactive, the thread may translate as a rigid body along its axis with an
arbitrary velocity. When the interface is symmetric with respect to a mid-point in each period,
and the symmetry is exploited to half the integration domainC, the translational eigenfunc-
tion does not appear, and the solution of the integral equation is unique. More generally, we
can remove the rigid-body-translation eigenfunction by replacingu in Equation (3.1) with a
modified velocityv, and also adding the following term to the right-hand side

−δαx 1− λ
1+ λ

1

SD

∫
D

vx(x)dS(x), (3.3)

whereD is one period of the interface. Once the solution forv has been found, the interfacial
velocity can be recovered as follows. Whenλ 6= 0, we set

uα(x0) = vα(x0)+ δαx 1− λ
2λ

1

SD

∫
D

vx(x)dS(x). (3.4)

Whenλ = 0, the fraction in the second term on the right-hand side of (3.4) is not defined, but
this only means that the translational motion expressed by the second term can be arbitrary.

In the diametrically opposite limit whereλ tends to infinity Equation (3.1) becomes

uα(x0) = − 1

4π(λµ)

∫
C

Gαβ(x0, x)1fβ(x)dl(x)

− 1

4π

∫ PV

C

Qαβγ (x0, x)uβ(x)nγ (x)dl(x). (3.5)
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(a) (b)

(c)

Figure 3. Sequences of evolving profiles over half the period of an axisymmetric perturbation, for viscosity ratio
λ = 0; (a)ka = 2

3, a1/a = 0·2, (b)ka = 2
3, a1/a = 0·5, (c)ka = 0·5, a1/a = 0·20.

The adjoint of the double-layer integral operator on the right-hand side of Equation (3.5) is

nγ (x0)

∫ PV

C

Qβαγ (x, x0)uβ(x)dl(x). (3.6)

Identity (3.2b) suggests that the adjoint of the integral Equation (3.5), and therefore the integ-
ral Equation (3.5) itself, has an infinite number of solutions that differ by a generally unknown
eigenfunction. This eigenfunction can be removed by adding the following deflating term to
the right-hand side of Equation (3.1)

nα(x0)
1− λ
1+ λ

∫
D

u(x) · n(x)σ dl(x)
/∫

D

σ dl(x). (3.7)
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(a) (b)

Figure 4. (a) Evolution of the amplitude of the disturbanceA, defined as half the difference between the maximum
and minimum thread radius, with respect to reduced timet̂ ≡ γ t/µa; the solid lines are forka = 2

3, with perturb-
ation amplitudesa1/a = 0·05, 0·2, 0·5, corresponding to increasing line thickness; the dashed line corresponds
to ka = 0·5, anda1/a = 0·20; the long-short dashed lines ending at the bullets represent the predictions of the
linear theory. (b) Corresponding evolution of the minimum thread radius, showing breakup at a finite time; the
long-short dashed lines display the slope predicted by the similarity solution.

In the numerical method, whenλ 6= 0,∞, we solved the undeflated or deflated integral
equation using either a direct method or the iterative method of successive substitutions im-
plemented with Jacobi or Gauss-Siedel updates. Forλ = 0, the deflated integral equation was
solved by the direct method; discretization involving a boundary-element method with linear
variation of the velocity and discontinuity in traction over the boundary elements produces a
system of linear system of equations which is solved by the method of Gauss elimination.

To describe the motion of the interface, we trace one period of it in an azimuthal plane
with a set of point particles, typically on the order of 100–250, approximate the contour of the
interface with a collection of circular arcs, solve the integral equation for the velocity at the
position of the point particles using a boundary-element method, and advance the position of
the point particles using the second-order Runge-Kutta method. Points are added at regions of
large curvature, or when two adjacent marker points have been separated by a large distance
due to stretching. Numerical error causes the volume of the thread over a period to slight
decrease during the simulations, but the change was less than 0·5 percent in all cases, and
less than 0·1 percent in most cases. A complete simulation requires approximately 24 hours
of CPU time on aSUN SPARCstation 20.

3.1. COMPUTATION OF THE GREEN’ S FUNCTIONS

The efficient and accurate computation of the periodic Green’s functionsG andQ is an import-
ant aspect of the numerical method. In the numerical procedure, we evaluated these functions
by summing the nonperiodic free-space axisymmetric Green’s functions, representing rings
of point forces oriented in the axial or radial direction, indicated by the superscript Ring.
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Expressions for the free space Green’s functions in terms of complete elliptic integrals of the
first and second kind are provided by Pozrikidis [34]. For example

Gαβ(x, σ, x0, σ0) =
N∑

k=−N
c|k|G

Ring
αβ (x + kL, σ, x0, σ0), (3.8)

where, for reasons that will soon become clear, we defineck = 1 for k = 1, . . . , N − 1,
andcN = 1

2; N is a specified truncation level, andL is the specified wave length. There is,
however, one important exception: We note thatGxx decays like 4πσ/|x + kL − x0|, and
prevent the divergence of its infinite sum by computing the modified sum

Gxx(x0, σ0, x, σ ) =
N∑

k=−N
c|k|

(
GRing
xx (x0, σ0, x + kL, σ )− 4πσ

|x + (k + 1
2)L|

)
. (3.9)

Note that the last term within the sum is independent of the field-point coordinates(x0, σ0).
The summed terms in Equations (3.8) and (3.9) decay like 1/k2. To accelerate the rate

of convergence, we use the error formula of the trapezoidal rule and find that the errorE

associated with the truncated sums (3.8) and (3.9) decays like 1/N ; that is

E(N) = δ

N
, (3.10)

whereδ is a constant (e.g.[36, p. 50]). This means that the sequence of errors corresponding
to the sequence of truncation levels

N0 = q, N1 = pq, N2 = p2q, N3 = p3q, . . . , (3.11)

wherep andq are two specified integers, satisfies the linear relation

E(Nk) = 1

p
E(Nk−1). (3.12)

The convergence may then be accelerated by use of the method of Aitken extrapolation (e.g.
[35, Chapter 1]. The numerical simulations reported in Section 4 were conducted in double
precision withq = 5 or 10 andp = 2. The appropriate values for these two parameters must
be found by numerical experimentation: Low values destroy the periodicity of the Green’s
function, and high values may cause numerical underflow due to the subtraction of numbers
with comparable magnitudes in carrying out the Aitken extrapolation.

4. Results and discussion

In Figure 2, we present graphs of the reduced linear growth rateσ̂I ≡ γ σI/µa of axisymmetric
perturbations, plotted against the reduced wave numberka, for several values of the viscosity
ratio λ, generated from analytical formulas provided by Tomotika [14] in terms of Bessel
functions;a is the equivalent thread radius, andσI is the imaginary part of the complex growth
rate. Asλ tends to zero, we observe a singular behavior: The graphs become steep near the
origin of the wave number axis, and the wave number corresponding to maximum growth
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(a) (b)

Figure 5. Comparison of the numerical results with the similarity solution: (a) scaled thread radius, and (b) scaled
axial velocity, defined in equations (4.1), forka = 2

3, a1/a = 0·2. The solid, dotted, dashed, long dashed, and
dot-dashed lines correspond, respectively to timestγ /µa = 10,11,12,13,14.

(a) (b)

Figure 6. Same as Figure 5, but forka = 0·5,a1/a = 0·2. The solid, dotted, dashed, and long dashed correspond,
respectively to timestγ /µa = 10,11,12,13.

rate is shifted toward zero indicating that the longer a wave, the faster it grows. Increasing
the viscosity of the ambient fluid causes a significant reduction in the growth rate of the
perturbations. In the limit asλ tends to infinity, corresponding to an inviscid thread suspended
in a viscous fluid, rescaling of the time with respect to the viscosity of the ambient fluid is
necessary.

In Figure 3(a–c), we present sequences of evolving profiles over half a period of a sinus-
oidal perturbation with initial amplitudea1, for λ = 0 and for the conditions described in
the figure caption, computed by the boundary-integral method. The profiles correspond to
evenly spaced time intervals between the origin of time and the last time shown in Figure 4.
In all cases, the reduced wave numberka is less than unity: The instability amplifies, as
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(a) (b)

(c) (d)

Figure 7. (a–c) Stages in the evolutioin of a thread for a bi-chromatic perturbation described by Equation (4.3)
with ka0 = 0·5, a1/a0 = 0·20 anda2/a0 = 0·20, at timeŝt ≡ γ t/µa0 = 0, 3·5, 7·5; (d) Stages in the evolution
of a thread for a bi-chromatic perturbation described by Equation (4.3) withka0 = 0·5, a1/a0 = 0·20 and
a2/a0 = 0·50, at timeŝt ≡ γ t/µa0 = 0,0·5, 1·0, 2·0,2·5, 2·848.

predicted by linear theory, and the thread tends to break up at the mid-point of each wave
length corresponding to the trough of the sinusoidal perturbation. The long time shape of the
thread consists of a periodic sequence of drops connected by thinning links.

In Figure 4(a), we plot the amplitude of a disturbanceA, defined as half the difference
between the maximum and minimum thread radius, against time, on a linear-logarithmic scale,
for several types of perturbation. The agreement between the numerical results, represented by
the solid lines, and the predictions of the linear theory, represented by the long-short dashed
lines marked by the bullets, is excellent even when the amplitude of the disturbance is not
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(a) (b)

(c)

Figure 8. Details of the motion shown in Figure 7(a–c): (a) evolution of the minimum thread radius, showing
breakup at a finite time; (b) scaled thread radius, and (c) scaled axial velocity, defined in Equations (4.1) plotted
against the similarity variable defined in Equation (4.2), fort̂ ≡ γ t/µa0 = 6·5, 7·0,7·5.

infinitesimal. In Figure 4(b), we plot the minimum thread radiusfm against time on a linear-
linear scale. In all cases, the numerical results clearly indicate that the minimum radius tends to
vanish at a finite critical timetc whose precise value depends on the wave length and amplitude
of the perturbation. Near the critical time, all curves tend to become linear with a common
slope that is in excellent agreement with that predicted by Papageorgiou’s similarity solution,
described by Equation (2.27) withβ = 0·175, and represented by the straight dashed line in
Figure 4(b).

As the critical time approaches, the intensity of the axisymmetric stagnation-point flow
prevailing near the point of breakup increases at an algebraic rate, in agreement with the
similarity solution. To demonstrate the agreement in quantitative terms, in Figure 5 and 6 we
plot profiles of the scaled functions

f̂ ≡ f (̂x, t)

Lτ
, û ≡ µ

γ τ 1−β u
I
x (̂x, t), (4.1)
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(a) (b)

(c)

Figure 9. Sequences of evolving profiles over half the period of an axisymmetric perturbation, forka = 2
3,

a1/a = 0·2, and viscosity ratio (a)λ = 0·05, (b) 1·0, (c) 5·0.

whereL is the wave length of the perturbation, anduIx(x, t) is the axial component of the
velocity along the interface, against the similarity variable

ξ ≡ x − xc
L

1

τβ
(4.2)

for β = 0·175. Figure 5 corresponds to a perturbation withka = 2
3, a1/a = 0·20, and

Figure 6 corresponds to a perturbation withka = 0·5, a1/a = 0·20; both are unstable
according to linear theory. The critical times,tc = 14·75µa/γ and 13·65µa/γ, were found by
extrapolating the data shown in Figure 4(b). The times corresponding to the various profiles
are given in the figure captions. According to the similarity solution, the scaled functions

204881.tex; 10/08/1999; 9:56; p.16



Capillary instability and breakup of a viscous thread271

(a) (b)

Figure 10. The shape of the interface close to the time of breakup forλ = 1 and (a)ka = 0·5 (b) 2
3, plotted along

with the cone angles deduced from the numerical results of Lister and Stone.

(4.1) possess a universal functional form subject to linear scaling of the similarity variable
ξ by a factor that is determined by the initial condition. The results shown in Figures 5
and 6 are in good agreement with the theoretical predictions over a substantial portion of
the thread around the point of breakup, up to the point where the thin-thread approximation
ceases to be valid. Furthermore, the shapes of the scaled functions shown in the graphs are
similar in form to those graphed by Papageorgiou [25]. The similarity solution predicts that
f (x = xc, t)/Lτ = 1/(12(1+ β)) = 0·0709 irrespective of the initial conditions, and this
value is consistent with the numerical results presented in Figures 5(a) and 6(a).

Papageorgiou [25] carried out numerical solutions of the thin-thread equations forka0 =
0·5 anda1/am = 0·20, wherea0 is the mean thread radius, related to the equivalent radiusa

by a2
0 = a2 − 0·5a2

1. These initial conditions are almost, but not precisely, identical to those
used in the boundary-integral simulations presented in Figure 3(c) and 6. The evolution of
the thread predicted by the thin-thread model is qualitatively similar to that generated by the
boundary-integral method. The critical time for breakup predicted by the thin-thread model,
tc = 13·281µa/γ, is surprisingly close to the value 13·65µa/γ predicted by the present
simulations. This good agreement suggests that further conclusions drawn by Papageorgiou
on the basis of his numerical investigations are also likely to be valid in the more inclusive
context of Stokes flow.

The numerical results presented thus far correspond to monochromatic perturbations: The
interface is symmetric with respect to the trough of the initial sinusoid, and remains so through-
out the evolution. The similarity solution also predicts locally symmetric shapes, but it is
not clear that these will arise from nonsymmetric initial conditions. To solve this issue, we
simulated the evolution of the thread subject to disturbances comprised of a fundamental wave
and its first harmonic. At the initial instant, the trace of the interface in an azimuthal plane is
described by the equation

s = a0 + a1 cos(kx)+ a2 sin(2kx), (4.3)
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(a) (b)

(c) (d)

(e)

Figure 11. (a–e) Stages in the evolution of a thread for a bi-chromatic perturbation described by Equation (4.3)
with ka0 = 0·5, a1/a0 = 0·20 anda2/a0 = 0·20, at timeŝt ≡ γ t/µa0 = 0,5, 20,25,29.
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wherek is the wave number of the fundamental wave. Figure 7(a–c) shows a sequence of
profiles forka0 = 0·5, a1/a0 = 0·20 anda2/a0 = 0·20, and Figure 7(d) shows a sequence of
profiles forka0 = 0·5, a1/a0 = 0·20 anda2/a0 = 0·50, in both cases over a full wave length
of the fundamental. In both cases, the fundamental wave is unstable, whereas the harmonic
wave is neutrally stable according to linear theory. In both cases, the unstable wave dominates
the evolution, the thread breaks up at a finite time, and the local structure of the flow and shape
of the interface are symmetric about the point of breakup near the critical time.

To demonstrate these behaviors more explicitly, in Figure 8(a) we plot the evolution of the
minimum thread radius against time, for the conditions corresponding to Figure 7(a–c). Near
the critical time for breakup,tc = 8·5µa0/γ estimated by extrapolation, we observe a linear
behavior with a slope that is in good agreement with that predicted by the similarity solution,
represented by the dashed line. In Figure 8(b,c) we plot the scaled interface profile and axial
velocity defined in Equations (4.1), against the similarity variable defined in Equation (4.2),
at dimensionless timeŝt ≡ γ t/µa0 = 6·5,7·0,7·5, forxc/L = 0·465 estimated by extrapola-
tion, and obtain locally symmetric and nearly universal shapes. These results provide us with
strong numerical evidence that the similarity solution is relevant to a broad range of symmetric
or unsymmetric initial conditions.

Papageorgiou [21] noted that inertial effects become important when the axial acceleration
of the fluid within the thread has reached sufficiently high levels. When this has occurred,
the similarity solution ceases to be valid, and a different kind of thinning, possibly described
by Egger’s [24] similarity solution, is expected to prevail. Such a transition was noted in the
experiments of Kowalewski [37]. Confirming it, however, in the context of Navier-Stokes flow
must await the development of sophisticated numerical methods.

Next, we consider the effect of the viscosity of the ambient fluid. In Figure 9(a–c), we
display sequences of evolving profiles for a sinusoidal perturbation withka = 2

3, anda1/a =
0·20, corresponding to viscosity ratioλ = 0·05,1·0,5·0. It is clear that the viscosity of the
ambient fluid plays an important role in determining the dynamics of thinning, the location of
the point of breakup, and the geometry of the interfacial shape near the point of breakup. When
λ = 0·05, the links connecting successive drops are nearly cylindrical, and breakup is expected
to occur away from the mid-point; numerical difficulties prevented us from continuing the
simulation beyond the last stage shown in the figure. The shifting of the breakup point is
clearly evident in Figure 9(b) correspondingλ = 1. In this case, the boundary-integral equa-
tion reduces to an integral representation, and this simplification has allowed us to carry out
the simulation virtually up to the point of interface touching. Similar shapes were presented
by Newhouse and Pozrikidis [17] and recently by Lister and Stone [33].

Lister and Stone [33] simulated the relaxation of an extended axisymmetric drop whose
viscosity is equal to that of the ambient fluid, and found that breakup occurs at a finite time,
in agreement with the results of our simulations forλ = 1. The shape of the interface near
the point of pinching is similar to that shown in Figure 9(b), consisting of a double cone
with aperture angles equal to 5·9◦ and 78·2◦. In Figure 10(a,b), we plot the shape of the
interface very close to the time of breakup forλ = 1 andka = 0·5 and 2

3, along with the
cones angles deduced by Lister and Stone, and find excellent agreement, thus confirming the
independence of the process of breakup on the initial conditions. Lister and Stone used high
resolution by deploying up to 4,000 marker points over the interface, to describe the shape
of the interface near the point of pinching. Unfortunately, high computational cost due to the
expensive evaluation of the periodic Green’s function has prevented us from duplicating their
analysis.
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To investigate further whether nonsymmetric initial conditions develop in different ways,
we simulated to motion of a thread forλ = 1, with the initial shape described by Equa-
tion (4.3), forka0 = 0·5, a1/a0 = 0·20 anda2/a0 = 0·20. In Figure 11(a–e), we present
typical stages in the evolution up to the point where breakup is about to occur on one side.
The partial similarity between the shapes at the two ends of the developing unsymmetric drops
with the shapes shown in Figure 9(b) suggest that the evolution near the point of breakup might
be universal, but the numerical evidence is not strong enough to be conclusive.

A simplified set of equations describing the evolution of a thinning thread in the presence
of a viscous ambient fluid has not been developed. In setting up such a theory, one may
approximate the flow within the thread with a uniaxial axisymmetric extensional flow added
to a parabolic flow, and represent the outer flow in terms of either the velocity or the shear
stress exerted on either side of the interface using, for example, the boundary-integral method.
The shear stress corresponding to the uniaxial axisymmetric extensional flow vanishes on
either side of the interface independent of the viscosities of the fluids, but the normal stress
undergoes a jump by an amount that is proportional to the viscosity difference and the local
rate of extension (Tomotika [38], Mikami, Cox and Mason [39]). The subtlety of computing
the outer extensional flow challenges the search for similarity solution describing universal
behaviors.
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